Final Exam — Advanced Algebraic Structures (WBMA011-05)

Wednesday January 25, 2022, 8:30h-10:30h

University of Groningen

Instructions

- 1. Write your name and student number on every page you hand in.
- 2. All answers need to be accompanied with an explanation or a calculation.
- 3. You may use results obtained in tutorial problems.
- 4. In total you can obtain at most 90 points on this exam. Your final grade is (P + 10)/10, where $P \leq 90$ is the number of points you obtain on the exam.
- 5. We wish you success!

Problem 1 (4+6+6+6+8 = 30 points)

Let $\zeta = e^{2\pi i/5}$ be a primitive fifth root of unity.

- (a) Find the minimal polynomial of ζ over \mathbb{Q} .
- (b) Show that there exists a cyclic extension of degree 5 over $\mathbb{Q}(\zeta)$.
- (c) Let $\alpha = \zeta + \zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is a subextension of $\mathbb{Q}(\zeta)$ of degree 2 over \mathbb{Q} .
- (d) Show that there are no other subextensions of $\mathbb{Q}(\zeta)$ of degree 2 over \mathbb{Q} .
- (e) Let τ be the nontrivial element of $\operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$. Show that $\tau(\alpha) = \zeta^2 + \zeta^{-2}$.
- [[Solution:
- (a) The minimal polynomial of ζ is the fifth cyclotomic polynomial

$$\Phi_5(x) = \frac{x^5 - 1}{x - 1} = x^4 + x^3 + x^2 + x + 1.$$

- (b) Let $L = \mathbb{Q}(\zeta, \sqrt[5]{2})$. We have $\sqrt[5]{2} \notin \mathbb{Q}(\zeta)$ since the degree $[\mathbb{Q}(\zeta) : \mathbb{Q}] = 4$ is not divisible by 5. Since $\mathbb{Q}(\zeta)$ contains a primitive fifth root of unity, the extension $L/\mathbb{Q}(\zeta)$ is cyclic of degree 5 by what we proved in the lecture.
- (c) The element ζ is a root of

$$(x-\zeta)(x+\zeta) = x^2 - \alpha x + 1,$$

so ζ has degree at most 2 over $\mathbb{Q}(\alpha)$. On the other hand $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ since $\alpha = \zeta + \overline{\zeta}$ is real, whereas ζ is complex. So $[\mathbb{Q}(\zeta) : \mathbb{Q}(\alpha)] = 2$. Since $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \varphi(5) = 4$, this implies that $\mathbb{Q}(\alpha)$ has degree 2 over \mathbb{Q} . (d) We showed in the lecture that the map

 $\theta \colon \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \to (\mathbb{Z}/5\mathbb{Z})^{\times}, \quad \sigma \mapsto a \mod 5, \text{ where } \sigma(\zeta) = \zeta^a,$

is an isomorphism. The group $(\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z}$ is cyclic, so there exists exactly one subgroup of index 2. By the Galois correspondence, there is only one subextension of $\mathbb{Q}(\zeta)/\mathbb{Q}$ of degree 2 over \mathbb{Q} .

(e) The element 2 has multiplicative order 4 modulo 5, hence is a generator of $(\mathbb{Z}/5\mathbb{Z})^{\times}$. This means the Galois group of $\mathbb{Q}(\zeta)/\mathbb{Q}$ is generated by σ with $\sigma(\zeta) = \zeta^2$. Since the restriction map $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ is surjective, the image of σ in the latter group is the nontrivial element τ . Therefore,

$$\tau(\alpha) = \sigma(\alpha) = \sigma(\zeta + \zeta^{-1}) = \zeta^2 + \zeta^{-2}.$$

]]

Problem 2 (6+4+10 = 20 points)

Let K be a field with char(K) = 0, and let $f \in K[x]$ be an irreducible polynomial of the form

$$f(x) = x^4 + bx^2 + 1$$

with $b \in K$. Let $L = K(\alpha)$ where α is a root of f.

- (a) Show that $\pm \alpha, \pm 1/\alpha$ are the pairwise distinct roots of f.
- (b) Show that L/K is a Galois extension.
- (c) Determine the Galois group $\operatorname{Gal}(L/K)$.

[[Solution:

(a) If γ is a root of f, so are $-\gamma$ and $1/\gamma$:

$$f(-\gamma) = (-\gamma)^4 + b(-\gamma)^2 + 1 = \gamma^4 + b\gamma^2 + 1 = f(\gamma) = 0,$$

$$f(1/\gamma) = (1/\gamma)^4 + b(1/\gamma)^2 + 1 = f(\gamma)/\gamma^4 = 0.$$

So $\pm \alpha, \pm 1/\alpha$ are roots of f. These are distinct: if $\gamma = -\gamma$ for a root γ of f, then $\gamma = 0$ (using char(K) = 0). If $\gamma = 1/\gamma$, then $\gamma = \pm 1$. If $\gamma = -1/\gamma$, then $\gamma = \pm i$. But neither of these can have f(x) as its minimal polynomial, since their minimal polynomials have degrees 1 or 2, whereas f has degree 4.

- (b) The extension is normal by (a). It is automatically separable since char(K) = 0. Hence it is normal.
- (c) The elements of $\operatorname{Gal}(K(\alpha)/K)$ are in bijection with the roots of the minimal polynomial f(x) of α . Let σ be the Galois automorphism with $\sigma(\alpha) = -\alpha$, let τ be the one with $\tau(\alpha) = 1/\alpha$, and ρ the one with $\rho(\alpha) = -1/\alpha$. Then the Galois group is

$$\operatorname{Gal}(L/K) = {\operatorname{id}, \sigma, \tau, \sigma\tau}.$$

$$-$$
 Page 2 of 4 $-$

All three nontrivial elements have order 2:

$$\begin{aligned} \sigma^2(\alpha) &= \sigma(-\alpha) = -\sigma(\alpha) = -(-\alpha) = \alpha, \\ \tau^2(\alpha) &= \tau(1/\alpha) = 1/\tau(\alpha) = 1/(1/\alpha) = \alpha, \\ \rho^2(\alpha) &= \rho(-1/\alpha) = -1/\rho(\alpha) = -1/(-1/\alpha) = \alpha \end{aligned}$$

So the Galois group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

]]

Problem 3 (7+6+6+7+8+6 = 40 points)

Let $R = \mathbb{Z}[w]$, where $w^2 = -2$. Let M be the R-module $\mathbb{Z}/3\mathbb{Z}$, with scalar multiplication

$$R \times M \to M$$
; $(a+bw)m = \bar{a}m + \bar{b}m$

and let N be the R-module $\mathbb{Z} \times \mathbb{Z}$, with scalar multiplication

$$R \times N \to N$$
; $(a+bw)(x,y) = (ax-2by,ay+bx)$

(you do not need to prove that M and N are R-modules).

- (a) Show that N is free of rank 1.
- (b) Use (a) to show that $\operatorname{Tor}_R(M \oplus N) \cong M$ (here and below, " \cong " means "*R*-module-isomorphism").
- (c) Is the *R*-module $M \oplus N$ projective?
- (d) Let I be the ideal I = (1 w)R of R. Show that $R/I \cong M$. (Hint: One way to approach this problem is to first find $\operatorname{Ann}_R(M)$. Also note that 3 = (1 w)(1 + w).)
- (e) Show that $\operatorname{Hom}_R(M \oplus N, M) \cong M \oplus M$.
- (f) Show that $M \otimes_R M \cong M$.
- [[Solution:
 - (a) The map $\varphi \colon N \to R$ sending (x, y) to x + yw is clearly a group homomorphism. By explicit computation, φ is an *R*-module homomorphism. It is bijective, since $w \notin \mathbb{Q}$, so $x, y \in \mathbb{Z}$ implies $x + wy \neq 0$.
 - (b) An element $a = (m, x, y) \in M \oplus N$ is torsion if and only if there is a nonzero $r \in R$ such that rm = 0 and r(x, y) = 0. Since R is a domain and N is free, this implies (x, y) = 0. But $r = 3 \in R \setminus \{0\}$ satisfies rm = 0 for all $m \in M$. Hence $\operatorname{Tor}_R(M \oplus N) = M \oplus \{0\}$, which is isomorphic to M via the R-module-isomorphism $(m, 0) \mapsto m$.
 - (c) Suppose that $M \oplus N$ is projective. Then $M \oplus N \oplus Q =: F$ is a free *R*-module for some *R*-module *Q*. Suppose $F \cong \bigoplus_{i \in I} R$, then, since *R* is a domain, any $f = \sum_i \lambda_i a_i \in F$ satisfies rf = 0 for some $r \in R$ only if either r = 0 or all $a_i = 0$, so f = 0. Hence *F* is torsion-free. But by (b), $(m, 0, 0, 0) \in \operatorname{Tor}_R(F)$ for every $m \in M$, a contradiction.

- (d) Let $r = a + bw \in \operatorname{Ann}_R(M)$, so $a + b \equiv 0 \pmod{3}$. This implies r = a(1 w) + 3k for some $k \in \mathbb{Z}$ and every such r is in $\operatorname{Ann}_R(M)$. Hence $\operatorname{Ann}_R(M)$ is the ideal generated by 1 - w and 3, and by the hint, this is just I. Now $M = \{r\overline{1} : r \in R\}$ is cyclic, so by tutorials, $R/I \cong M$.
- (e) By tutorials, $\operatorname{Hom}_R(M \oplus N, M) \cong \operatorname{Hom}_R(M, M) \oplus \operatorname{Hom}_R(N, M)$. By (a), $\operatorname{Hom}_R(N, M) \cong \operatorname{Hom}_R(R, M)$ and the latter is $\cong M$ for any *R*-module *M*, as shown in the lectures. Since *M* is cyclic, any $f \in \operatorname{Hom}_R(M, M)$ is determined by $f(\bar{1})$. To conclude, show that $f_i(\bar{m}) = \overline{im}$ is indeed in $\operatorname{Hom}_R(M, M)$ for i = 0, 1, 2, and that $f_i \mapsto \bar{i}$ defines an *R*-module-homomorphism.
- (f) Using (d), $M \otimes_R M \cong R/I \otimes_R R/I$. By tutorials, $R/I \otimes_R R/I \cong (R/I)/(I(R/I))$, but I(R/I) = 0.

End of test (90 points)