
Final Exam — Advanced Algebraic Structures (WBMA011-05)

Wednesday January 25, 2022, 8:30h–10:30h

University of Groningen

Instructions

1. Write your name and student number on every page you hand in.

2. All answers need to be accompanied with an explanation or a calculation.

3. You may use results obtained in tutorial problems.

4. In total you can obtain at most 90 points on this exam. Your final grade is (P + 10)/10,
where P ≤ 90 is the number of points you obtain on the exam.

5. We wish you success!

Problem 1 (4+6+6+6+8 = 30 points)

Let ζ = e2πi/5 be a primitive fifth root of unity.

(a) Find the minimal polynomial of ζ over Q.

(b) Show that there exists a cyclic extension of degree 5 over Q(ζ).

(c) Let α = ζ + ζ−1. Show that Q(α) is a subextension of Q(ζ) of degree 2 over Q.

(d) Show that there are no other subextensions of Q(ζ) of degree 2 over Q.

(e) Let τ be the nontrivial element of Gal(Q(α)/Q). Show that τ(α) = ζ2 + ζ−2.

[[ Solution:

(a) The minimal polynomial of ζ is the fifth cyclotomic polynomial

Φ5(x) =
x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1.

(b) Let L = Q(ζ, 5
√
2). We have 5

√
2 ̸∈ Q(ζ) since the degree [Q(ζ) : Q] = 4 is not divisible

by 5. Since Q(ζ) contains a primitive fifth root of unity, the extension L/Q(ζ) is cyclic of
degree 5 by what we proved in the lecture.

(c) The element ζ is a root of

(x− ζ)(x+ ζ) = x2 − αx+ 1,

so ζ has degree at most 2 over Q(α). On the other hand Q(α) ⊆ R since α = ζ + ζ is real,
whereas ζ is complex. So [Q(ζ) : Q(α)] = 2. Since [Q(ζ) : Q] = φ(5) = 4, this implies that
Q(α) has degree 2 over Q.
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(d) We showed in the lecture that the map

θ : Gal(Q(ζ)/Q) → (Z/5Z)×, σ 7→ a mod 5, where σ(ζ) = ζa,

is an isomorphism. The group (Z/5Z)× ∼= Z/4Z is cyclic, so there exists exactly one
subgroup of index 2. By the Galois correspondence, there is only one subextension of
Q(ζ)/Q of degree 2 over Q.

(e) The element 2 has multiplicative order 4 modulo 5, hence is a generator of (Z/5Z)×. This
means the Galois group of Q(ζ)/Q is generated by σ with σ(ζ) = ζ2. Since the restriction
map Gal(Q(ζ)/Q) ↠ Gal(Q(α)/Q) is surjective, the image of σ in the latter group is the
nontrivial element τ . Therefore,

τ(α) = σ(α) = σ(ζ + ζ−1) = ζ2 + ζ−2.

]]

Problem 2 (6+4+10 = 20 points)

Let K be a field with char(K) = 0, and let f ∈ K[x] be an irreducible polynomial of the form

f(x) = x4 + bx2 + 1

with b ∈ K. Let L = K(α) where α is a root of f .

(a) Show that ±α,±1/α are the pairwise distinct roots of f .

(b) Show that L/K is a Galois extension.

(c) Determine the Galois group Gal(L/K).

[[ Solution:

(a) If γ is a root of f , so are −γ and 1/γ:

f(−γ) = (−γ)4 + b(−γ)2 + 1 = γ4 + bγ2 + 1 = f(γ) = 0,

f(1/γ) = (1/γ)4 + b(1/γ)2 + 1 = f(γ)/γ4 = 0.

So ±α,±1/α are roots of f . These are distinct: if γ = −γ for a root γ of f , then γ = 0
(using char(K) = 0). If γ = 1/γ, then γ = ±1. If γ = −1/γ, then γ = ±i. But neither
of these can have f(x) as its minimal polynomial, since their minimal polynomials have
degrees 1 or 2, whereas f has degree 4.

(b) The extension is normal by (a). It is automatically separable since char(K) = 0. Hence it
is normal.

(c) The elements of Gal(K(α)/K) are in bijection with the roots of the minimal polynomial
f(x) of α. Let σ be the Galois automorphism with σ(α) = −α, let τ be the one with
τ(α) = 1/α, and ρ the one with ρ(α) = −1/α. Then the Galois group is

Gal(L/K) = {id, σ, τ, στ}.
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All three nontrivial elements have order 2:

σ2(α) = σ(−α) = −σ(α) = −(−α) = α,

τ 2(α) = τ(1/α) = 1/τ(α) = 1/(1/α) = α,

ρ2(α) = ρ(−1/α) = −1/ρ(α) = −1/(−1/α) = α.

So the Galois group is isomorphic to Z/2Z× Z/2Z.

]]

Problem 3 (7+6+6+7+8+6 = 40 points)

Let R = Z[w], where w2 = −2. Let M be the R-module Z/3Z, with scalar multiplication

R×M → M ; (a+ bw)m = ām+ b̄m

and let N be the R-module Z× Z, with scalar multiplication

R×N → N ; (a+ bw)(x, y) = (ax− 2by, ay + bx)

(you do not need to prove that M and N are R-modules).

(a) Show that N is free of rank 1.

(b) Use (a) to show that TorR(M ⊕ N) ∼= M (here and below, “∼=” means “R-module-
isomorphism”).

(c) Is the R-module M ⊕N projective?

(d) Let I be the ideal I = (1− w)R of R. Show that R/I ∼= M . (Hint: One way to approach
this problem is to first find AnnR(M). Also note that 3 = (1− w)(1 + w).)

(e) Show that HomR(M ⊕N,M) ∼= M ⊕M .

(f) Show that M ⊗R M ∼= M .

[[ Solution:

(a) The map φ : N → R sending (x, y) to x + yw is clearly a group homomorphism. By
explicit computation, φ is an R-module homomorphism. It is bijective, since w /∈ Q, so
x, y ∈ Z implies x+ wy ̸= 0.

(b) An element a = (m,x, y) ∈ M ⊕N is torsion if and only if there is a nonzero r ∈ R such
that rm = 0 and r(x, y) = 0. Since R is a domain and N is free, this implies (x, y) = 0.
But r = 3 ∈ R \ {0} satisfies rm = 0 for all m ∈ M . Hence TorR(M ⊕ N) = M ⊕ {0},
which is isomorphic to M via the R-module-isomorphism (m, 0) 7→ m.

(c) Suppose that M ⊕N is projective. Then M ⊕N ⊕Q =: F is a free R-module for some
R-module Q. Suppose F ∼= ⊕i∈IR, then, since R is a domain, any f =

∑
i λiai ∈ F

satisfies rf = 0 for some r ∈ R only if either r = 0 or all ai = 0, so f = 0. Hence F is
torsion-free. But by (b), (m, 0, 0, 0) ∈ TorR(F ) for every m ∈ M , a contradiction.
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(d) Let r = a + bw ∈ AnnR(M), so a + b ≡ 0 (mod 3). This implies r = a(1 − w) + 3k for
some k ∈ Z and every such r is in AnnR(M). Hence AnnR(M) is the ideal generated by
1 − w and 3, and by the hint, this is just I. Now M = {r1̄ : r ∈ R} is cyclic, so by
tutorials, R/I ∼= M .

(e) By tutorials, HomR(M⊕N,M) ∼= HomR(M,M)⊕HomR(N,M). By (a), HomR(N,M) ∼=
HomR(R,M) and the latter is ∼= M for any R-module M , as shown in the lectures. Since
M is cyclic, any f ∈ HomR(M,M) is determined by f(1̄). To conclude, show that
fi(m̄) = im is indeed in HomR(M,M) for i = 0, 1, 2, and that fi 7→ ī defines an R-
module-homomorphism.

(f) Using (d), M ⊗R M ∼= R/I ⊗R R/I. By tutorials, R/I ⊗R R/I ∼= (R/I)/(I(R/I)), but
I(R/I) = 0.

End of test (90 points)
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