Final Exam - Advanced Algebraic Structures (WBMA011-05)

Wednesday January 25, 2022, 8:30h-10:30h
University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. You may use results obtained in tutorial problems.
4. In total you can obtain at most 90 points on this exam. Your final grade is $(P+10) / 10$, where $P \leq 90$ is the number of points you obtain on the exam.
5. We wish you success!

Problem $1(4+6+6+6+8=30$ points $)$
Let $\zeta=e^{2 \pi i / 5}$ be a primitive fifth root of unity.
(a) Find the minimal polynomial of ζ over \mathbb{Q}.
(b) Show that there exists a cyclic extension of degree 5 over $\mathbb{Q}(\zeta)$.
(c) Let $\alpha=\zeta+\zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is a subextension of $\mathbb{Q}(\zeta)$ of degree 2 over \mathbb{Q}.
(d) Show that there are no other subextensions of $\mathbb{Q}(\zeta)$ of degree 2 over \mathbb{Q}.
(e) Let τ be the nontrivial element of $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$. Show that $\tau(\alpha)=\zeta^{2}+\zeta^{-2}$.
[[Solution:
(a) The minimal polynomial of ζ is the fifth cyclotomic polynomial

$$
\Phi_{5}(x)=\frac{x^{5}-1}{x-1}=x^{4}+x^{3}+x^{2}+x+1 .
$$

(b) Let $L=\mathbb{Q}(\zeta, \sqrt[5]{2})$. We have $\sqrt[5]{2} \notin \mathbb{Q}(\zeta)$ since the degree $[\mathbb{Q}(\zeta): \mathbb{Q}]=4$ is not divisible by 5 . Since $\mathbb{Q}(\zeta)$ contains a primitive fifth root of unity, the extension $L / \mathbb{Q}(\zeta)$ is cyclic of degree 5 by what we proved in the lecture.
(c) The element ζ is a root of

$$
(x-\zeta)(x+\zeta)=x^{2}-\alpha x+1
$$

so ζ has degree at most 2 over $\mathbb{Q}(\alpha)$. On the other hand $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$ since $\alpha=\zeta+\bar{\zeta}$ is real, whereas ζ is complex. So $[\mathbb{Q}(\zeta): \mathbb{Q}(\alpha)]=2$. Since $[\mathbb{Q}(\zeta): \mathbb{Q}]=\varphi(5)=4$, this implies that $\mathbb{Q}(\alpha)$ has degree 2 over \mathbb{Q}.
(d) We showed in the lecture that the map

$$
\theta: \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \rightarrow(\mathbb{Z} / 5 \mathbb{Z})^{\times}, \quad \sigma \mapsto a \bmod 5, \text { where } \sigma(\zeta)=\zeta^{a}
$$

is an isomorphism. The group $(\mathbb{Z} / 5 \mathbb{Z})^{\times} \cong \mathbb{Z} / 4 \mathbb{Z}$ is cyclic, so there exists exactly one subgroup of index 2. By the Galois correspondence, there is only one subextension of $\mathbb{Q}(\zeta) / \mathbb{Q}$ of degree 2 over \mathbb{Q}.
(e) The element 2 has multiplicative order 4 modulo 5 , hence is a generator of $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$. This means the Galois group of $\mathbb{Q}(\zeta) / \mathbb{Q}$ is generated by σ with $\sigma(\zeta)=\zeta^{2}$. Since the restriction map $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \rightarrow \operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ is surjective, the image of σ in the latter group is the nontrivial element τ. Therefore,

$$
\tau(\alpha)=\sigma(\alpha)=\sigma\left(\zeta+\zeta^{-1}\right)=\zeta^{2}+\zeta^{-2}
$$

]]

Problem $2(6+4+10=20$ points $)$

Let K be a field with $\operatorname{char}(K)=0$, and let $f \in K[x]$ be an irreducible polynomial of the form

$$
f(x)=x^{4}+b x^{2}+1
$$

with $b \in K$. Let $L=K(\alpha)$ where α is a root of f.
(a) Show that $\pm \alpha, \pm 1 / \alpha$ are the pairwise distinct roots of f.
(b) Show that L / K is a Galois extension.
(c) Determine the Galois group $\operatorname{Gal}(L / K)$.
[[Solution:
(a) If γ is a root of f, so are $-\gamma$ and $1 / \gamma$:

$$
\begin{aligned}
f(-\gamma) & =(-\gamma)^{4}+b(-\gamma)^{2}+1=\gamma^{4}+b \gamma^{2}+1=f(\gamma)=0 \\
f(1 / \gamma) & =(1 / \gamma)^{4}+b(1 / \gamma)^{2}+1=f(\gamma) / \gamma^{4}=0
\end{aligned}
$$

So $\pm \alpha, \pm 1 / \alpha$ are roots of f. These are distinct: if $\gamma=-\gamma$ for a root γ of f, then $\gamma=0$ (using $\operatorname{char}(K)=0$). If $\gamma=1 / \gamma$, then $\gamma= \pm 1$. If $\gamma=-1 / \gamma$, then $\gamma= \pm i$. But neither of these can have $f(x)$ as its minimal polynomial, since their minimal polynomials have degrees 1 or 2 , whereas f has degree 4 .
(b) The extension is normal by (a). It is automatically separable since $\operatorname{char}(K)=0$. Hence it is normal.
(c) The elements of $\operatorname{Gal}(K(\alpha) / K)$ are in bijection with the roots of the minimal polynomial $f(x)$ of α. Let σ be the Galois automorphism with $\sigma(\alpha)=-\alpha$, let τ be the one with $\tau(\alpha)=1 / \alpha$, and ρ the one with $\rho(\alpha)=-1 / \alpha$. Then the Galois group is

$$
\operatorname{Gal}(L / K)=\{\mathrm{id}, \sigma, \tau, \sigma \tau\}
$$

All three nontrivial elements have order 2:

$$
\begin{aligned}
& \sigma^{2}(\alpha)=\sigma(-\alpha)=-\sigma(\alpha)=-(-\alpha)=\alpha \\
& \tau^{2}(\alpha)=\tau(1 / \alpha)=1 / \tau(\alpha)=1 /(1 / \alpha)=\alpha \\
& \rho^{2}(\alpha)=\rho(-1 / \alpha)=-1 / \rho(\alpha)=-1 /(-1 / \alpha)=\alpha
\end{aligned}
$$

So the Galois group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

]]

Problem $3(7+6+6+7+8+6=40$ points)

Let $R=\mathbb{Z}[w]$, where $w^{2}=-2$. Let M be the R-module $\mathbb{Z} / 3 \mathbb{Z}$, with scalar multiplication

$$
R \times M \rightarrow M ; \quad(a+b w) m=\bar{a} m+\bar{b} m
$$

and let N be the R-module $\mathbb{Z} \times \mathbb{Z}$, with scalar multiplication

$$
R \times N \rightarrow N ; \quad(a+b w)(x, y)=(a x-2 b y, a y+b x)
$$

(you do not need to prove that M and N are R-modules).
(a) Show that N is free of rank 1 .
(b) Use (a) to show that $\operatorname{Tor}_{R}(M \oplus N) \cong M$ (here and below, " \cong " means " R-moduleisomorphism").
(c) Is the R-module $M \oplus N$ projective?
(d) Let I be the ideal $I=(1-w) R$ of R. Show that $R / I \cong M$. (Hint: One way to approach this problem is to first find $\operatorname{Ann}_{R}(M)$. Also note that $3=(1-w)(1+w)$.)
(e) Show that $\operatorname{Hom}_{R}(M \oplus N, M) \cong M \oplus M$.
(f) Show that $M \otimes_{R} M \cong M$.
[[Solution:
(a) The map $\varphi: N \rightarrow R$ sending (x, y) to $x+y w$ is clearly a group homomorphism. By explicit computation, φ is an R-module homomorphism. It is bijective, since $w \notin \mathbb{Q}$, so $x, y \in \mathbb{Z}$ implies $x+w y \neq 0$.
(b) An element $a=(m, x, y) \in M \oplus N$ is torsion if and only if there is a nonzero $r \in R$ such that $r m=0$ and $r(x, y)=0$. Since R is a domain and N is free, this implies $(x, y)=0$. But $r=3 \in R \backslash\{0\}$ satisfies $r m=0$ for all $m \in M$. Hence $\operatorname{Tor}_{R}(M \oplus N)=M \oplus\{0\}$, which is isomorphic to M via the R-module-isomorphism $(m, 0) \mapsto m$.
(c) Suppose that $M \oplus N$ is projective. Then $M \oplus N \oplus Q=: F$ is a free R-module for some R-module Q. Suppose $F \cong \oplus_{i \in I} R$, then, since R is a domain, any $f=\sum_{i} \lambda_{i} a_{i} \in F$ satisfies $r f=0$ for some $r \in R$ only if either $r=0$ or all $a_{i}=0$, so $f=0$. Hence F is torsion-free. But by (b), $(m, 0,0,0) \in \operatorname{Tor}_{R}(F)$ for every $m \in M$, a contradiction.
(d) Let $r=a+b w \in \operatorname{Ann}_{R}(M)$, so $a+b \equiv 0(\bmod 3)$. This implies $r=a(1-w)+3 k$ for some $k \in \mathbb{Z}$ and every such r is in $\operatorname{Ann}_{R}(M)$. Hence $\operatorname{Ann}_{R}(M)$ is the ideal generated by $1-w$ and 3 , and by the hint, this is just I. Now $M=\{r \overline{1}: r \in R\}$ is cyclic, so by tutorials, $R / I \cong M$.
(e) By tutorials, $\operatorname{Hom}_{R}(M \oplus N, M) \cong \operatorname{Hom}_{R}(M, M) \oplus \operatorname{Hom}_{R}(N, M)$. $\operatorname{By}(\mathrm{a}), \operatorname{Hom}_{R}(N, M) \cong$ $\operatorname{Hom}_{R}(R, M)$ and the latter is $\cong M$ for any R-module M, as shown in the lectures. Since M is cyclic, any $f \in \operatorname{Hom}_{R}(M, M)$ is determined by $f(\overline{1})$. To conclude, show that $f_{i}(\bar{m})=\overline{i m}$ is indeed in $\operatorname{Hom}_{R}(M, M)$ for $i=0,1,2$, and that $f_{i} \mapsto \bar{i}$ defines an R -module-homomorphism.
(f) Using (d), $M \otimes_{R} M \cong R / I \otimes_{R} R / I$. By tutorials, $R / I \otimes_{R} R / I \cong(R / I) /(I(R / I))$, but $I(R / I)=0$.

End of test (90 points)

